Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.23.21259405

ABSTRACT

India has seen a surge of SARS-CoV-2 infections and deaths in early part of 2021, despite having controlled the epidemic during 2020. Building on a two-strain, semi-mechanistic model that synthesizes mortality and genomic data, we find evidence that altered epidemiological properties of B.1.617.2 (Delta) variant play an important role in this resurgence in India. Under all scenarios of immune evasion, we find an increased transmissibility advantage for B.1617.2 against all previously circulating strains. Using an extended SIR model accounting for reinfections and wanning immunity, we produce evidence in support of how early public interventions in March 2021 would have helped to control transmission in the country. We argue that enhanced genomic surveillance along with constant assessment of risk associated with increased transmission is critical for pandemic responsiveness.


Subject(s)
Severe Acute Respiratory Syndrome
2.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2102.11249v2

ABSTRACT

Updating observations of a signal due to the delays in the measurement process is a common problem in signal processing, with prominent examples in a wide range of fields. An important example of this problem is the nowcasting of COVID-19 mortality: given a stream of reported counts of daily deaths, can we correct for the delays in reporting to paint an accurate picture of the present, with uncertainty? Without this correction, raw data will often mislead by suggesting an improving situation. We present a flexible approach using a latent Gaussian process that is capable of describing the changing auto-correlation structure present in the reporting time-delay surface. This approach also yields robust estimates of uncertainty for the estimated nowcasted numbers of deaths. We test assumptions in model specification such as the choice of kernel or hyper priors, and evaluate model performance on a challenging real dataset from Brazil. Our experiments show that Gaussian process nowcasting performs favourably against both comparable methods, and against a small sample of expert human predictions. Our approach has substantial practical utility in disease modelling -- by applying our approach to COVID-19 mortality data from Brazil, where reporting delays are large, we can make informative predictions on important epidemiological quantities such as the current effective reproduction number.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.11.21249461

ABSTRACT

ObjectivesTo determine if there is an association between survival rates in intensive care units (ICU) and occupancy of the unit on the day of admission. DesignNational retrospective observational cohort study spanning the first wave of the Englands COVID-19 pandemic. Setting114 hospital trusts (groups of hospitals functioning as single operational units). Participants4,032 adults admitted to an ICU in England between 2nd April and 1st June, 2020, with presumed or confirmed COVID-19, for whom data was submitted to the national surveillance programme and met study inclusion criteria. InterventionsN/A Main Outcomes and MeasuresA Bayesian hierarchical approach was used to model the association between hospital trust level (mechanical ventilation compatible) bed occupancy, and in-hospital all-cause mortality. Results were adjusted for unit characteristics (pre-pandemic size), individual patient-level demographic characteristics (age, sex, ethnicity, time-to-ICU admission), and recorded chronic comorbidities (obesity, diabetes, respiratory disease, liver disease, heart disease, hypertension, immunosuppression, neurological disease, renal disease). Results79,793 patient-days were observed, with a mortality rate of 19.4 per 1,000 patient days. Adjusting for patient-level factors, mortality was higher for admissions during periods of high occupancy (>85% occupancy versus the baseline of 45 to 85%) [OR 1.19 (95% posterior credible interval (PCI): 1.00 to 1.44)]. In contrast, mortality was decreased for admissions during periods of low occupancy (<45% relative to the baseline) [OR 0.75 (95% PCI: 0.62 to 0.89)]. Conclusion and RelevanceIncreasing occupancy of beds compatible with mechanical ventilation, a proxy for operational strain, is associated with a higher mortality risk for individuals admitted to ICU. Public health interventions (such as expeditious vaccination programmes and non-pharmaceutical interventions) to control both incidence and prevalence of COVID-19, and therefore keep ICU occupancy low in the context of the pandemic, are necessary to mitigate the impact of this type of resource saturation. Trial RegistrationN/A O_TEXTBOXSummary Box What is already known on this topicPre-pandemic, higher occupancy of intensive care units was shown to be associated with increased mortality risk. However, there is limited data on the extent to which occupancy levels impacted patient outcomes during the first wave of COVID-19, especially in light of the mobilisation of significant additional resources. A recent study from Belgium reported a 42% higher mortality during periods of ICU surge capacity deployment, although in the analysis surge capacity was evaluated only as a binary variable. Although, this contradicts earlier results from smaller studies in Australia and Wales, where no association between ICU occupancy and mortality was identified. What this study addsThe results of this study suggest that survival rates for patients with COVID-19 in intensive care settings appears to deteriorate as the occupancy of (surge capacity) beds compatible with mechanical ventilation (a proxy for operational pressure), increases. Moreover, this risk doesnt occur above a specific threshold, but rather appears linear; whereby going from 0% occupancy to 100% occupancy increases risk of mortality by 92% (after adjusting for relevant individual-level factors). Furthermore, risk of mortality based on occupancy on the date of recorded outcome is even higher; OR 4.74 (95% posterior credible interval: 3.54 - 6.34). As such, this national-level cohort study of England provides compelling evidence for a relationship between occupancy and critical care mortality, and highlights the needs for decisive action to control the incidence and prevalence of COVID-19. C_TEXTBOX


Subject(s)
Respiratory Tract Diseases , Diabetes Mellitus , Heredodegenerative Disorders, Nervous System , Obesity , Kidney Diseases , Hypertension , COVID-19 , Heart Diseases , Liver Diseases
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.24.20248813

ABSTRACT

BackgroundNon-pharmaceutical interventions such as lockdowns, mask wearing and social distancing have been the primary measures to effectively combat the COVID-19 pandemic. Such measures are highly effective when there is strong population wide adherence which needs to be facilitated by information on the current risks posed by the pandemic alongside a clear exposition of the rules and guidelines in place. Here we address the issue of communication on the pandemic by offering data and analysis of online news media coverage of COVID-19. MethodsWe collected 26 million news articles from the front pages of 172 major online news sources in 11 countries (available at http://sciride.org). Using topic detection we identified COVID-19-related content to quantify the proportion of total coverage pandemic received in 2020. Sentiment analysis tool Vader was employed to stratify the emotional polarity of COVID-19 reporting. Further topic detection and sentiment analysis was performed on COVID-19 articles to reveal the leading themes in pandemic reporting and their respective emotional polarizations. FindingsWe find that COVID-19 coverage accounted for approximately 25% of all front-page online news articles between January and October 2020. Sentiment analysis of English-speaking sources reveals that the overall COVID-19 coverage cannot be simply classified as negative due to the disease subject matter, suggesting a wide heterogeneous reporting of the pandemic. Within this heterogenous coverage, 16% of COVID-19 news articles (or 4% of all English-speaking articles) can be classified as highly negatively polarized, citing issues such as death, fear or crisis. InterpretationThe goal of pandemic public health communication is to increase understanding of distancing rules and maximize the impact of any governmental policy. Our results suggest an information overload in COVID-19 reporting that could risk obscuring effective policy communication. We hope that our data and analysis will inform health communication strategy to minimize the risks of COVID-19 while vaccination regimes are being introduced.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.18.20197376

ABSTRACT

Following initial declines, in mid 2020, a resurgence in transmission of novel coronavirus disease (COVID-19) has occurred in the United States and parts of Europe. Despite the wide implementation of non-pharmaceutical interventions, it is still not known how they are impacted by changing contact patterns, age and other demographics. As COVID-19 disease control becomes more localised, understanding the age demographics driving transmission and how these impacts the loosening of interventions such as school reopening is crucial. Considering dynamics for the United States, we analyse aggregated, age-specific mobility trends from more than 10 million individuals and link these mechanistically to age-specific COVID-19 mortality data. In contrast to previous approaches, we link mobility to mortality via age-specific contact patterns and use this rich relationship to reconstruct accurate transmission dynamics. Contrary to anecdotal evidence, we find little support for age-shifts in contact and transmission dynamics over time. We estimate that, until August, 63.4% [60.9%-65.5%] of SARS-CoV-2 infections in the United States originated from adults aged 20-49, while 1.2% [0.8%-1.8%] originated from children aged 0- 9. In areas with continued, community-wide transmission, our transmission model predicts that re-opening kindergartens and elementary schools could facilitate spread and lead to additional COVID-19 attributable deaths over a 90-day period. These findings indicate that targeting interventions to adults aged 20-49 are an important consideration in halting resurgent epidemics and preventing COVID-19-attributable deaths when kindergartens and elementary schools reopen.


Subject(s)
COVID-19 , Coronavirus Infections , Severe Acute Respiratory Syndrome , Pulmonary Disease, Chronic Obstructive
6.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2009.03851v3

ABSTRACT

Model selection is a fundamental part of the applied Bayesian statistical methodology. Metrics such as the Akaike Information Criterion are commonly used in practice to select models but do not incorporate the uncertainty of the models' parameters and can give misleading choices. One approach that uses the full posterior distribution is to compute the ratio of two models' normalising constants, known as the Bayes factor. Often in realistic problems, this involves the integration of analytically intractable, high-dimensional distributions, and therefore requires the use of stochastic methods such as thermodynamic integration (TI). In this paper we apply a variation of the TI method, referred to as referenced TI, which computes a single model's normalising constant in an efficient way by using a judiciously chosen reference density. The advantages of the approach and theoretical considerations are set out, along with explicit pedagogical 1 and 2D examples. Benchmarking is presented with comparable methods and we find favourable convergence performance. The approach is shown to be useful in practice when applied to a real problem - to perform model selection for a semi-mechanistic hierarchical Bayesian model of COVID-19 transmission in South Korea involving the integration of a 200D density.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.15.20154617

ABSTRACT

Knowing COVID-19 epidemiological distributions, such as the time from patient admission to death, is directly relevant to effective primary and secondary care planning, and moreover, the mathematical modelling of the pandemic generally. Here we determine epidemiological distributions for patients hospitalised with COVID-19 using a large dataset (range N=21,000-157,000) from the Brazilian SIVEP-Gripe (Sistema de Informacao de Vigilancia Epidemiologica da Gripe) database. We fit a set of probability distribution functions and estimate a symptom-onset-to-death mean of $15.2$ days for Brazil, which is lower than earlier estimates of 17.8 days based on early Chinese data. A joint Bayesian subnational model is used to simultaneously describe the 26 states and one federal district of Brazil, and shows significant variation in the mean of the symptom-onset-to-death time, with ranges between 11.2-17.8 days across the different states. We find strong evidence in favour of specific probability distribution function choices: for example, the gamma distribution gives the best fit for onset-to-death and the generalised log-normal for onset-to-hospital-discharge. Our results show that epidemiological distributions have considerable geographical variation, and provide the first estimates of these distributions in a low and middle-income setting. At the subnational level, variation in COVID-19 outcome timings are found to be correlated with poverty, deprivation and segregation levels, and weaker correlation is observed for mean age, wealth and urbanicity.


Subject(s)
COVID-19 , Death , Gerstmann Syndrome
8.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2007.10317v2

ABSTRACT

Knowing COVID-19 epidemiological distributions, such as the time from patient admission to death, is directly relevant to effective primary and secondary care planning, and moreover, the mathematical modelling of the pandemic generally. We determine epidemiological distributions for patients hospitalised with COVID-19 using a large dataset ($N=21{,}000-157{,}000$) from the Brazilian Sistema de Informa\c{c}\~ao de Vigil\^ancia Epidemiol\'ogica da Gripe database. A joint Bayesian subnational model with partial pooling is used to simultaneously describe the 26 states and one federal district of Brazil, and shows significant variation in the mean of the symptom-onset-to-death time, with ranges between 11.2-17.8 days across the different states, and a mean of 15.2 days for Brazil. We find strong evidence in favour of specific probability density function choices: for example, the gamma distribution gives the best fit for onset-to-death and the generalised log-normal for onset-to-hospital-admission. Our results show that epidemiological distributions have considerable geographical variation, and provide the first estimates of these distributions in a low and middle-income setting. At the subnational level, variation in COVID-19 outcome timings are found to be correlated with poverty, deprivation and segregation levels, and weaker correlation is observed for mean age, wealth and urbanicity.


Subject(s)
COVID-19 , Death
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.13.20152355

ABSTRACT

As of 1st June 2020, the US Centers for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly modelled the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We used changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2. Nationally, we estimated 3.7% [3.4%-4.0%] of the population had been infected by 1st June 2020, with wide variation between states, and approximately 0.01% of the population was infectious. We also demonstrated that good model forecasts of deaths for the next 3 weeks with low error and good coverage of our credible intervals.


Subject(s)
COVID-19 , Coinfection , Oculocerebrorenal Syndrome , Death
10.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2006.16487v1

ABSTRACT

Renewal processes are a popular approach used in modelling infectious disease outbreaks. In a renewal process, previous infections give rise to future infections. However, while this formulation seems sensible, its application to infectious disease can be difficult to justify from first principles. It has been shown from the seminal work of Bellman and Harris that the renewal equation arises as the expectation of an age-dependent branching process. In this paper we provide a detailed derivation of the original Bellman Harris process. We introduce generalisations, that allow for time-varying reproduction numbers and the accounting of exogenous events, such as importations. We show how inference on the renewal equation is easy to accomplish within a Bayesian hierarchical framework. Using off the shelf MCMC packages, we fit to South Korea COVID-19 case data to estimate reproduction numbers and importations. Our derivation provides the mathematical fundamentals and assumptions underpinning the use of the renewal equation for modelling outbreaks.


Subject(s)
COVID-19 , Infections , Communicable Diseases
11.
Darlan da Silva Candido; Ingra Morales Claro; Jaqueline Goes de Jesus; William Marciel de Souza; Filipe Romero Rebello Moreira; Simon Dellicour; Thomas A. Mellan; Louis du Plessis; Rafael Henrique Moraes Pereira; Flavia Cristina da Silva Sales; Erika Regina Manuli; Julien Theze; Luis Almeida; Mariane Talon de Menezes; Carolina Moreira Voloch; Marcilio Jorge Fumagalli; Thais de Moura Coletti; Camila Alves Maia Silva; Mariana Severo Ramundo; Mariene Ribeiro Amorim; Henrique Hoeltgebaum; Swapnil Mishra; Mandev Gill; Luiz Max Carvalho; Lewis Fletcher Buss; Carlos Augusto Prete Jr.; Jordan Ashworth; Helder Nakaya; Pedro da Silva Peixoto; Oliver J Brady; Samuel M. Nicholls; Amilcar Tanuri; Atila Duque Rossi; Carlos Kaue Vieira Braga; Alexandra Lehmkuhl Gerber; Ana Paula Guimaraes; Nelson Gaburo Jr.; Cecilia Salete Alencar; Alessandro Clayton de Souza Ferreira; Cristiano Xavier Lima; Jose Eduardo Levi; Celso Granato; Giula Magalhaes Ferreira; Ronaldo da Silva Francisco Jr.; Fabiana Granja; Marcia Teixeira Garcia; Maria Luiza Moretti; Mauricio Wesley Perroud Jr.; Terezinha Marta Pereira Pinto Castineiras; Carolina Dos Santos Lazari; Sarah C Hill; Andreza Aruska de Souza Santos; Camila Lopes Simeoni; Julia Forato; Andrei Carvalho Sposito; Angelica Zaninelli Schreiber; Magnun Nueldo Nunes Santos; Camila Zolini Sa; Renan Pedra Souza; Luciana Cunha Resende Moreira; Mauro Martins Teixeira; Josy Hubner; Patricia Asfora Falabella Leme; Rennan Garcias Moreira; Mauricio Lacerda Nogueira; - CADDE-Genomic-Network; Neil Ferguson; Silvia Figueiredo Costa; Jose Luiz Proenca-Modena; Ana Tereza Vasconcelos; Samir Bhatt; Philippe Lemey; Chieh-Hsi Wu; Andrew Rambaut; Nick J Loman; Renato Santana Aguiar; Oliver G Pybus; Ester Cerdeira Sabino; Nuno Rodrigues Faria.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.11.20128249

ABSTRACT

Brazil currently has one of the fastest growing SARS-CoV-2 epidemics in the world. Due to limited available data, assessments of the impact of non-pharmaceutical interventions (NPIs) on virus transmission and epidemic spread remain challenging. We investigate the impact of NPIs in Brazil using epidemiological, mobility and genomic data. Mobility-driven transmission models for Sao Paulo and Rio de Janeiro cities show that the reproduction number (Rt) reached below 1 following NPIs but slowly increased to values between 1 to 1.3 (1.0 - -1.6). Genome sequencing of 427 new genomes and analysis of a geographically representative genomic dataset from 21 of the 27 Brazilian states identified >100 international introductions of SARS-CoV-2 in Brazil. We estimate that three clades introduced from Europe emerged between 22 and 27 February 2020, and were already well-established before the implementation of NPIs and travel bans. During this first phase of the epidemic establishment of SARS-CoV-2 in Brazil, we find that the virus spread mostly locally and within-state borders. Despite sharp decreases in national air travel during this period, we detected a 25% increase in the average distance travelled by air passengers during this time period. This coincided with the spread of SARS-CoV-2 from large urban centers to the rest of the country. In conclusion, our results shed light on the role of large and highly connected populated centres in the rapid ignition and establishment of SARS-CoV-2, and provide evidence that current interventions remain insufficient to keep virus transmission under control in Brazil.

12.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.09.20096701

ABSTRACT

Brazil is an epicentre for COVID-19 in Latin America. In this report we describe the Brazilian epidemic using three epidemiological measures: the number of infections, the number of deaths and the reproduction number. Our modelling framework requires sufficient death data to estimate trends, and we therefore limit our analysis to 16 states that have experienced a total of more than fifty deaths. The distribution of deaths among states is highly heterogeneous, with 5 states---Sao Paulo, Rio de Janeiro, Ceara, Pernambuco and Amazonas---accounting for 81% of deaths reported to date. In these states, we estimate that the percentage of people that have been infected with SARS-CoV-2 ranges from 3.3% (95% CI: 2.8%-3.7%) in Sao Paulo to 10.6% (95% CI: 8.8%-12.1%) in Amazonas. The reproduction number (a measure of transmission intensity) at the start of the epidemic meant that an infected individual would infect three or four others on average. Following non-pharmaceutical interventions such as school closures and decreases in population mobility, we show that the reproduction number has dropped substantially in each state. However, for all 16 states we study, we estimate with high confidence that the reproduction number remains above 1. A reproduction number above 1 means that the epidemic is not yet controlled and will continue to grow. These trends are in stark contrast to other major COVID-19 epidemics in Europe and Asia where enforced lockdowns have successfully driven the reproduction number below 1. While the Brazilian epidemic is still relatively nascent on a national scale, our results suggest that further action is needed to limit spread and prevent health system overload.


Subject(s)
COVID-19 , Death , Infections
13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.05.20089359

ABSTRACT

Italy was the first European country to experience sustained local transmission of COVID-19. As of 1st May 2020, the Italian health authorities reported 28,238 deaths nationally. To control the epidemic, the Italian government implemented a suite of non-pharmaceutical interventions (NPIs), including school and university closures, social distancing and full lockdown involving banning of public gatherings and non essential movement. In this report, we model the effect of NPIs on transmission using data on average mobility. We estimate that the average reproduction number (a measure of transmission intensity) is currently below one for all Italian regions, and significantly so for the majority of the regions. Despite the large number of deaths, the proportion of population that has been infected by SARS-CoV-2 (the attack rate) is far from the herd immunity threshold in all Italian regions, with the highest attack rate observed in Lombardy (13.18% [10.66%-16.70%]). Italy is set to relax the currently implemented NPIs from 4th May 2020. Given the control achieved by NPIs, we consider three scenarios for the next 8 weeks: a scenario in which mobility remains the same as during the lockdown, a scenario in which mobility returns to pre-lockdown levels by 20%, and a scenario in which mobility returns to pre-lockdown levels by 40%. The scenarios explored assume that mobility is scaled evenly across all dimensions, that behaviour stays the same as before NPIs were implemented, that no pharmaceutical interventions are introduced, and it does not include transmission reduction from contact tracing, testing and the isolation of confirmed or suspected cases. New interventions, such as enhanced testing and contact tracing are going to be introduced and will likely contribute to reductions in transmission; therefore our estimates should be viewed as pessimistic projections. We find that, in the absence of additional interventions, even a 20% return to pre-lockdown mobility could lead to a resurgence in the number of deaths far greater than experienced in the current wave in several regions. Future increases in the number of deaths will lag behind the increase in transmission intensity and so a second wave will not be immediately apparent from just monitoring of the daily number of deaths. Our results suggest that SARS-CoV-2 transmission as well as mobility should be closely monitored in the next weeks and months. To compensate for the increase in mobility that will occur due to the relaxation of the currently implemented NPIs, adherence to the recommended social distancing measures alongside enhanced community surveillance including swab testing, contact tracing and the early isolation of infections are of paramount importance to reduce the risk of resurgence in transmission.


Subject(s)
COVID-19
14.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2004.11342v1

ABSTRACT

Following the emergence of a novel coronavirus (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics. In response, many European countries have implemented unprecedented non-pharmaceutical interventions including case isolation, the closure of schools and universities, banning of mass gatherings and/or public events, and most recently, wide-scale social distancing including local and national lockdowns. In this technical update, we extend a semi-mechanistic Bayesian hierarchical model that infers the impact of these interventions and estimates the number of infections over time. Our methods assume that changes in the reproductive number - a measure of transmission - are an immediate response to these interventions being implemented rather than broader gradual changes in behaviour. Our model estimates these changes by calculating backwards from temporal data on observed to estimate the number of infections and rate of transmission that occurred several weeks prior, allowing for a probabilistic time lag between infection and death. In this update we extend our original model [Flaxman, Mishra, Gandy et al 2020, Report #13, Imperial College London] to include (a) population saturation effects, (b) prior uncertainty on the infection fatality ratio, (c) a more balanced prior on intervention effects and (d) partial pooling of the lockdown intervention covariate. We also (e) included another 3 countries (Greece, the Netherlands and Portugal). The model code is available at https://github.com/ImperialCollegeLondon/covid19model/ We are now reporting the results of our updated model online at https://mrc-ide.github.io/covid19estimates/ We estimated parameters jointly for all M=14 countries in a single hierarchical model. Inference is performed in the probabilistic programming language Stan using an adaptive Hamiltonian Monte Carlo (HMC) sampler.


Subject(s)
COVID-19 , Death
SELECTION OF CITATIONS
SEARCH DETAIL